1, Hệ thức lượng trong tam giác vuông
2, Định lý cosin
Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với cosin của góc xen giữa chúng.
3, Hệ thức trung tuyến trong tam giác
4. Định lý sin
Trong tam giác ABC bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là
5, Công thức tính diện tích tam giác
6, Giải tam giác ứng dụng vào thực tiễn
Giải tam giác: Là tìm tất cả các cạnh và các góc của tam giác
Muốn giải tam giác ta cần tìm mối liên hệ giữa các yếu tố đã cho với các yếu tố chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.
Chú ý:
1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)
2. Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.