Hàm số liên tục – Môn Toán lớp 11

0
53

Ở bài viết này, chúng ta sẽ cùng Thầy Nguyễn Thanh Tùng (giáo viên môn Toán tại Hệ thống Giáo dục HOCMAI) đi tìm hiểu về “Hàm số liên tục”.

1, Định nghĩa.

Cho hàm số y=f(x) xác định trên khoảng K và x0 ∈ K. Hàm số y=f(x) được gọi là liên tục tại x0 nếu: Hàm số y=f(x) được gọi là liên tục tại Hàm số y=f(x) được gọi là không liên tục tại x0

Hàm số y=f(x) liên tục trên một khoảng nếu liên tục tại mọi điểm của khoảng đó.

Hàm số y=f(x) liên tục trên đoạn [a,b] nếu liên tục trên (a,b) và 

2, Các định lý cơ bản.

Định lí 1: Hàm số đa thức liên tục trên toàn bộ tập số thực R.

Hàm số phân thức hữu tỉ và các hàm số lượng giác liên tục trên từng khoảng của tập xác định của chúng.

Định lí 2:

  • Nếu y=f(x) và y=g(x) là hai hàm số liên tục tại điểm x0. Khi đó: Các hàm số y=f(x)+g(x), y=f(x)-g(x) và y=f(x).g(x) liên tục tại x.
  • Hàm số y=f(x)/g(x) liên tục tại x0 nếu g(x0)#0.
  • Nếu hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 sẽ tồn tại ít nhất một điểm c thuộc (a;b) sao cho f(c)=0.( chứng minh sự tồn tại nghiệm của phương trình trên một khoảng)

Hy vọng với bài viết này sẽ giúp ích cho các em trong quá trình học môn Toán lớp 11.

Bình luận Facebook
Hàm số liên tục – Môn Toán lớp 11
Đánh giá bài viết

LEAVE A REPLY

Please enter your comment!
Please enter your name here